400-780-1011 全国统一24小时咨询服务热线

首页 > 院校资讯 > 考研大纲 >

2022考研大纲:长沙理工大学2022年010 数学与统计学院考研初试837高等代数考试大纲

网络 708 2021-09-23 16:57:53

众所周知,考研大纲是全国硕士研究生考试命题的重要依据,也是考生复习备考必不可少的工具书。今天,小编为大家整理了“2022考研大纲:长沙理工大学2022年010 数学与统计学院考研初试837高等代数考试大纲”的相关内容,祝您考研顺利!

科目代码:837 科目名称:高等代数

一、考试要求

1掌握一元多项式相关概念,带余除法,能求两个多项式的最大公因式,因式分解定理,重因式,多项式的根在探讨多项式的整除性与不可约性中应用,复系数与实系数多项式的因式分解,有理系数多项式的根及艾森斯坦因判别法

2理解行列式的概念和基本性质,掌握行列式展开定理行列式的计算。

3掌握向量组的线性相关与线性无关性向量组的秩矩阵的秩的概念能进行相关的计算和证明,熟练掌握线性方程组有解的判别线性方程组解的结构线性方程组的解法及有关证明

4、掌握矩阵的概念矩阵的运算,矩阵乘积的行列式与秩的性质,矩阵的充要条件,逆矩阵的求法,矩阵方程的求解,矩阵与分块矩阵的初等变换及(广义)初等矩阵矩阵的行列式与秩的计算证明中的应用。

5理解二次型及其矩阵表示标准形规范形及矩阵合同的概念,掌握实二次型的标准形的求法、惯性定理、二次型(矩阵)正定的等价条件及其在相关计算和证明中的应用

六、理解线性空间中关于维数基与坐标基变换与坐标变换线性子空间子空间的交与和及直和线性空间的同构的概念,掌握相关的计算和证明

七、理解线性变换的定义线性变换的运算线性变换的矩阵、线性变换(矩阵)特征值与特征向量、线性变换(矩阵)的对角化、线性变换的值域与核不变子空间最小多项式的概念及有关性质,掌握相关的计算和证明,掌握Hamlton-Cayley定理及其应用。

八、理解λ-矩阵λ-矩阵在初等变换下的标准形不变因子行列式因子初等因子Jordan块与Jordan标准形、伴侣阵与有理标准形的概念及有关性质掌握相关的计算和证明,掌握矩阵相似的条件,能求矩阵的若当标准形矩阵的有理标准形。

九、理解欧氏空间、度量矩阵、标准正交基正交变换、对称变换、子空间正交及正交补的概念及有关性质掌握Schmit正交化标准正交基的方法,掌握实对称矩阵的性质、用正交变换化实二次型为标准形及实对称矩阵的正交对角化的相关计算与证明

二、考试内容

1一元多项式,整除的概念,最大公因式,因式分解定理,重因式,多项式函数,复系数与实系数多项式的因式分解,有理系数多项式。

2行列式的概念和基本性质,行列式展开定理,行列式的计算。

3向量的概念,向量组的线性相关与线性无关性,向量组的秩,矩阵的秩,线性方程组有解的判别,线性方程组解的结构,线性方程组的解法

4矩阵的运算,矩阵乘积的行列式与秩,矩阵的逆,矩阵的分块,初等矩阵,分块乘法的初等变换。

5二次型及其矩阵表示,标准形及规范形,正定二次型。

6线性空间的定义及简单性质,维数,基与坐标,基变换与坐标变换,线性子空间,子空间的交与和及直和,线性空间的同构。

7线性变换的定义,线性变换的运算,线性变换的矩阵,特征值与特征向量,对角矩阵,线性变换的值域与核,不变子空间,最小多项式。

8λ-矩阵的定义,λ-矩阵在初等变换下的标准形,不变因子,行列式因子,初等因子,矩阵相似的条件,矩阵的若当标准形,矩阵的有理标准形。

9欧氏空间定义与基本性质,标准正交基,同构,正交变换,子空间,实对称矩阵的标准形。

三、题型

试卷满分为150分,其中:计算题占50%证明题占50%

四、参考教材

1.《高等代数》.北京大学数学系几何与代数教研室编王萼芳,石生明修订,高等教育出版社,2003,第版。

以上就是小编整理的“2022考研大纲:长沙理工大学2022年010 数学与统计学院考研初试837高等代数考试大纲”的全部内容,更多关于长沙理工大学2022年考研大纲的信息,尽在“考研大纲”栏目,定会对大家有所帮助!

附件: 长沙理工大学2022年010 数学与统计学院考研初试837高等代数考试大纲.docx

快给朋友分享吧!

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。

非特殊说明,本文版权原作者,转载请注明出处

本文地址://m.nutnow-lb.com/dagang/94700.html
关于我们
  • 关于我们
  • 产品&服务
    找院校 找专业 去提问 复试信息
    帮助中心
    • 考研营小程序

      考研营小程序

    • 考研营手机站

      考研营手机站

    • 微信公众号

      微信公众号

    • 研课网

      研课网

    商务合作 咨询电话:400-780-1011 在线客服 友情链接:2375219877
    Baidu
    map