西安建筑科技大学

2020 年攻读硕士学位研究生招生考试试题

(答案书写在本试题纸上无效。考试结束后本试题纸须附在答题纸内交回) 共2页

考试科目:	(818) 高等代数
つ かいて ロ・	(010) 10 寸 0 数

一、填空题(共6题,每题5分,共30分)

- 2. 多项式 $f(x) = x^3 + 3x^2 + kx + 1$ 有重根,则 k =_______。
- 3. 已知矩阵 $A_{4\times 4}$, |A| = -1, A^* 为 A 的伴随矩阵,则 $|(2A)^{-1} \frac{3}{2}A^*| = ______$
- 4. 已知 $\varepsilon_1 = 1$, $\varepsilon_2 = x$, $\varepsilon_3 = x^2$ 和 $\eta_1 = 1$, $\eta_2 = 1 x$, $\eta_3 = (1 + x)^2$ 是线性空间 $P_3[x]$ 两组基,则由基 η_1 , η_2 , η_3 到基 ε_1 , ε_2 , ε_3 的过渡矩阵为_____。
- 5. 设 $f = \sum_{i=1}^{n} x_i^2 + \sum_{1 \leq i < j \leq n} x_i x_j$,则 f 的正惯性指数为_____。
- 6. 二次型 $f(x_1,x_2,x_3)=x_1^2+3x_2^2+3x_3^2+2ax_2x_3$ (其中a>0),通过正交变换化成标准型为 $f=y_1^2+y_2^2+5y_3^2$,则参数 a=_____。
- 二、(15分) 求向量组 $\alpha_1 = (1,2,-1,4)^T$, $\alpha_2 = (1,1,0,2)^T$, $\alpha_3 = (0,2,2,4)^T$,
- $\alpha_4 = (1, -1, 2, -2)^T$, $\alpha_5 = (1, 3, -4, 6)^T$ 的一个极大线性无关组和秩,并把其余向量用极大无关组线性表示。
- 三、(15分) 已知实方阵 A满足 $A^2 A + 2E = 0$, 其中 E 为单位矩阵。
- (1) 证明 A+2E 可逆并求出其逆矩阵; (2) 证明对任意实数 a . A+aE 都是可逆矩阵。

四、(15分) 计算 n 阶行列式 $D = \begin{bmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ x & 1 & 2 & \cdots & n-2 & n-1 \\ x & x & 1 & \cdots & n-3 & n-2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ x & x & x & \cdots & 1 & 2 \\ x & x & x & \cdots & x & 1 \end{bmatrix}$

五、(20分)设有三元实二次型 $f(x_1,x_2,x_3) = a(x_1^2 + x_2^2 + x_3^2) + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$,

- (1) 记 $X = (x_1, x_2, x_3)^T$, $Y = (y_1, y_2, y_3)^T$, 求正交变换X = PY, 将 $f(x_1, x_2, x_3)$ 化为标准形;
- (2) 问a为何值时,f正定?

六、(15分) 证明 x_0 是 f(x) 的 k 重根的充分必要条件是 $f(x_0) = f'(x_0) = \cdots = f^{(k-1)}(x_0) = 0$,

而 $f^{(k)}(x_0) \neq 0$,举例说明"如果 $a \neq f'(x)$ 的 m 重根,那么 $a \neq f(x)$ 的 m+1 重根"是不对的。

七、(15分) 考虑 $P_{n}[x]$ 上的线性变换

$$D: f(x) \mapsto f'(x), \quad A: f(x) \mapsto f(x+1)$$

若它们在基底下 $(1,x,rac{x^2}{2!},\cdots,rac{x^{n-1}}{(n-1)!})$ 的矩阵分别为D,A,证明:

(1)
$$D^n = O$$
 (2) $A = E + D + \frac{D^2}{2!} + \dots + \frac{D^{n-1}}{(n-1)!}$

 \mathcal{N} 、(10分)证明: 如果 σ 是 n维欧氏空间V的一个正交变换,那么 σ 的不变子空间的正交补也是 σ 的不变子空间。

九、(15分)设V是实数域P上全体n阶方阵在通常的运算下构成的线性空间, σ 为V上的线性变换,

且对任意的 $A \in V$, $\sigma(A) = A^T$

- (1) 求 σ 的特征值; (2) 对每一个特征值, 求其对应的特征子空间;
- (3) 证明V恰是 σ 的所有特征子空间的直和。