昆明理工大学 2021 年硕士研究生招生入学考试试题(A卷)

考试科目代码: 813 考试科目名称: 运筹学

考生答题须知

- 1. 所有题目(包括填空、选择、图表等类型题目)答题答案必须做在考点发给的答题纸上,做在本试题册上无效。 请考生务必在答题纸上写清题号。
- 2. 评卷时不评阅本试题册,答题如有做在本试题册上而影响成绩的,后果由考生自己负责。
- 3. 答题时一律使用蓝、黑色墨水笔或圆珠笔作答(画图可用铅笔),用其它笔答题不给分。

1. 答题时不准使用涂改液等具有明显标记的涂改用品。
一、填空题。(共10分,每空1分)
1、线性规划问题的可行解如为最优解,则该可行解一定为。
2、用大M法求解Max型线性规划时,人工变量在目标函数中的系数均为,若最优解的含
有非零人工变量时,则原问题无解。
3、目标规划的目标函数(又称为准则函数或达成函数)由各目标约束的、和
权系数构成。
4、在资源优化的线性规划问题中,某资源有剩余,则对应的影子价格为。
5、在用割平面法求解整数规划问题时,要求全部变量必须为。
6、在确定概率型网络图的工作时间时一般采用三点时间估计法。若 a 为最乐观时间、 m 为最可能
完成时间、b 为最悲观时间,则每道工作的期望工时可估计为, 方差为。
7、运输问题的约束条件系数矩阵的元素为。
二、名词解释题。(每题 3 分, 共 12 分)
1、最优解

- 2、最小生成树
- 3、混合整数线性规划
- 4、连通图
- 三、简答题。(共8分)

简述分支定界法求解整数规划的基本思想。

四、(共45分)某工厂在计划期内(每日)生产甲、乙、丙三种产品,每种产品都需要经过A、

B、C 三道工序加工,每件产品的利润和所需加工时间如表 1 所示。

	甲	乙	丙	可用工时(小时)
工序 A (小时/公斤)	2	1	3	160
工序 B (小时/公斤)	1	0	1	60
工序 C (小时/公斤)	3	2	1	280
单位利润(小时/公斤)	4	1	3	

表 1 产品的利润和所需加工时间

- (1) 试建立求最大利润的线性规划模型,并用单纯形法求出最优解。
- (2) 写出该线性规划模型的对偶问题,并给出对偶问题的最优解和最优值。
- (3)给出各工序的影子价格。试问应优先增加哪道工序可用工时,可以扩大生产增加利润?如果要保持这种增加关系,该工序最大可增加多少小时?(此时假设其他工序的可用工时不变)?
- (4) 要保持最优解不变, 甲产品单位利润可变化的范围是多少?
- (5) 现工厂有新产品丁,单位利润为 8, A、B、C 三道工序的加工时间分别为 3、2、4,是否值得投产,为什么?若值得,求可生产丁的最优方案。
- 五、(共30分)设有3个仓库要用汽车往4个销售商运送货品,每个仓库到每个销售商的运送单价数据如表2所示。

	B_1	B_2	B_3	B_4	产量
A_{l}	3	6	2	4	70
A_2	5	3	3	4	80
A_3	1	7	5	2	65
销量	40	30	70	60	

表 2 运送单价表

- (1) 给出该运输问题的数学模型。
- (2) 请用表上作业法求解该运输问题的最优调用方案和最小总运费。

六、(25分)有一项工程,其相关信息如表3所示。

表 3

工序代号	紧前工序	工序长(天)	工序代号	紧前工序	工序长(天)
A		3	I	D, E	5
В	A	20	J	G	15
С	A	10	K	D, E	3
D	В	14	L	G	3
Е	A	8	M	J、H、I	2
F	В	4	N	J、H、I	46
G	C、F	3	P	K, M	20
Н	В	10			

- (1) 绘制工程网络图。
- (2) 计算各节点的最早开始时间和最迟完工时间和时差。
- (3) 确定关键路径和工期。

七、(20分)设有500台同一规模并完好的自动机床,每台机床每年在高负荷工作下,可创利20万元,完好率为0.4;在低负荷工作下,每台机床每年可创利15万元,完好率为0.8.试拟定连续4年的机床分配计划,使得在第四年年末仍有160台机床能保持完好,并使得总利润最大。