甘肃农业大学 2022 年全国硕士研究生招生考试 初试自命题科目考试大纲

科目代码: __736_ 科目名称: _《分子生物学》

	,
	1.考察考生对分子生物学基础知识、基本概念和基本理论的掌握程度;
考査目标	2.考察考生综合运用所学知识分析问题、解决问题的能力,因而可以作为我校选拔硕士研究
	生的重要依据。
试题类型	名词解释、填空、判断、单项选择、缩写符号的中文全称、简答和综合分析论述。
	[1]《分子生物学教程》(第三版),赵亚华主编,科学出版社,2018年
参考书目	[2]《现代分子生物学》 (第五版),朱玉贤主编,高等教育出版社,2019年
	[3]《分子生物学》 (原书第五版), Robert F. Weaver 著, 郑用琏译, 科学出版社, 2018 年
	一、 核酸的结构与功能
	1. 细胞内的遗传物质
	2. 核酸的化学组成与共价结构
	(1) 核酸的化学组成
	(2) 多聚核苷酸的结构
	3. DNA 的高级结构与功能
	(1) 双螺旋模型特征
考查	(2) DAN 高级结构的其他形式
内容	(3) DNA 结构的动态性与精细结构
范围	(4) DNA 的超螺旋结构与拓扑学性质
	4. 真核生物的染色体及其组装
	(1) 真核生物的染色体
	(2) 染色体中的蛋白质
	(3) 核小体的形成
	(4) 染色质的高级结构
	5. RNA 的结构与功能
	(1) RNA 的结构特点

共6页 第1页

(2) RNA 的分类

二、 基因与基因组的结构与功能

- 1. 基本概念
- (1) 基因及基因组的概念
- (2) C 值及 C 值悖理
- 2. 原核生物基因组的结构与特点
- (1) λ 噬菌体结构特点
- (2) 大肠杆菌基因组结构特点
- (3) ΦX174 噬菌体基因组的结构特点——重叠基因
- 3. 真核生物基因组的结构特点
- (1) 断裂基因、内含子、外显子
- (2) SV40 病毒基因组
- (3) 真核生物基因序列类型
- (4) 真核生物基因家族及基因簇

三、DNA 复制

- 1. 概述
- 2. 原核生物 DNA 复制的调控
- (1) 大肠杆菌 DNA 复制的调控
- (2) λ 噬菌体 DNA 复制的调控
- 3. 真核生物 DNA 复制
- (1) 染色体端粒的复制
- (2) DNA 复制调控

四、DNA 损伤、修复及基因突变

- 1. DNA 的损伤
- (1) DNA 损伤的原因
- (2) DNA 损伤的后果
- 2. DNA 修复

共 6页 第 2 页

- (1) 回复修复
- (2) 切除修复
- (3) 重组修复
- (4) SOS 修复及差错修复
- 3. 基因突变的类型

五、DNA 重组与转座

- 1. 同源重组的机制
- (1) 断裂重接和异源双链
- (2) 支链迁移
- (3) 碱基对的错配及消除
- (4) DNA 分子的配对
- (5) RecA 蛋白和 RecBCD 酶
- (6) 参与同源重组的其他蛋白质
- (7) 同源重组的酶学机制
- (8) Holliday 模型
- 2. 位点特异性重组
- 3. 转座
- (1) 转座概念
- (2) 转座类型

六、RNA 的转录

- 1. 原核生物和真核生物 RNA 转录的差异
- 2. 原核生物的 RNA 转录调控
- (1) 转录的起始阶段调控
- (2) 转录延伸阶段的调控
- (3) 转录的终止阶段调控
- 3. 真核生物 RNA 的转录
- (1) I 类基因启动子
- (2) Ⅱ类基因启动子

共6页 第3页

- (3) Ⅲ类基因启动子
- (4) Ⅱ类基因转录的转录因子和转录起始复合物
- (5) Ⅰ类和Ⅱ类基因的转录因子和转录起始复合物

七、 RNA 转录后的剪切与加工

- 1. RNA 的成熟
- 2. 原核生物 RNA 的转录后加工
- (1) 原核生物 rRNA 剪切加工
- (2) 原核生物 tRNA 剪切加工
- (3) 原核生物 mRNA 剪切加工
- 3. 真核生物 RNA 的剪切加工
- (1) 剪接方式分类
- (2) 真核生物 rRNA 剪切加工
- (3) 真核生物 tRNA 剪切加工
- (4) 真核生物 mRNA 剪切加工
- (5) 剪接机制
- 4. RNA 的编辑
- 5. RNA 的再编码

八、原核基因表达调控

- 1. 原核生物基因表达调控的意义和特点
- 2. 几个基本概念
- 3. 乳糖代谢系统和操纵子模型
- (1) 酶的诱导
- (2) JacobMonod 的负控制模型及实验依据
- (3) 基因产物及功能
- (4) 操纵区和启动区
- (5) 正控制系统
- (6) P-0 区的结构
- 4. 阿拉伯糖操纵子

共6页 第4页

- (1) 阿拉伯糖操纵子概述
- (2) 阿拉伯糖操纵子的调节机制
- 5. 色氨酸操纵子
- (1) 色氨酸操纵子的阻遏一操纵系统
- (2) 弱化子和前导区
- (3) mRNA 的前导区全序列分析
- (4) 弱化的机制
- 6. 半乳糖操纵子
- (1) cAMP-CAP 对两个 gal 启动子的不同作用
- (2) 双启动子的生理功能
- (3) 双操纵区
- 7. 受多重启动子调控的操纵子
- 8. 重叠基因的调控作用
- 9. 噬菌体基因的表达调控
- (1) 噬菌体的生活周期
- (2) 噬菌体裂解过程中基因表达调控是级联反应
- (3) 噬菌体 SP01-替换σ亚基改变宿主的转录对象
- (4) λ噬菌体基因组的表达调控

九、真核生物基因表达调控

- 1. 真核基因表达调控的特点
- 2. 真核基因表达调控的不同层次
- 3. 染色体水平上的调控
- (1) 染色质的结构
- (2) 异染色质化
- (3) 组蛋白对基因活性的影响
- (4) 组蛋白的乙酰化与去乙酰化
- (5) 活性染色质对 DNase 的敏感性
- (6) 非组蛋白
- (7) 染色体基因的重排

共6页 第5页

- 4. DNA 水平上的调控
- 5. 增强子、绝缘子和沉默子的调控作用
- 6. 蛋白质调节因子的活性调节
- (1) 转录因子的激活结构域
- (2) 可诱导的调控因子
- (3) к基因结合核基因
- (4) 中介因子
- (5) 甾体激素诱导的转录调控

共 6页 第 6 页